Analysis of CO Emission in Comet C/2002 T7 (LINEAR) from Infrared Observations

William M. Anderson Jr.

Department of Physics
Catholic University of America
Washington, DC 20064
and
Solar System Exploration Division
NASA Goddard Space Flight Center
Greenbelt, MD 20711
88anderw@cua.edu

Michael A. DiSanti

Goddard Center for Astrobiology and Solar System Exploration Division NASA Goddard Space Flight Center Greenbelt, MD 20711

Michael J. Mumma

Goddard Center for Astrobiology and Solar System Exploration Division NASA Goddard Space Flight Center Greenbelt, MD 20711

Neil Dello Russo

Department of Physics Catholic University of America Washington, DC 20064 and Solar System Exploration Division NASA Goddard Space Flight Center Greenbelt, MD 20711

Boncho P. Bonev

Department of Physics University of Toledo Toledo, OH 43066 and Solar System Exploration Division NASA Goddard Space Flight Center Greenbelt, MD 20711

Karen Magee-Sauer

Department of Physics & Astronomy Rowan University Glassboro, NJ 08028

Erika L. Gibb

Department of Physics University of Notre Dame Cometary nuclei are the most primitive remnants of the early Solar System. Their physical and chemical attributes allow a glimpse into the conditions in which icy bodies formed. Only in recent years has it been possible to routinely study parent volatiles in the infrared. A significant variation in composition among ten comets sampled to date has been demonstrated, and this forms the foundation of a new cometary taxonomy based on chemistry.

In spring 2004, we observed comet C/2002 T7 (LINEAR) using the facility echelle spectrometer (CSHELL) at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. CSHELL offers seeing-limited spatial resolution and sufficiently high spectral resolving power ($R \sim 2.5 \times 10^4$) to permit line-by-line intensities to be measured along its 30 arcsecond-long slit. Emission lines from multiple molecular species were targeted in the 3 to 5 micron infrared region, and our observations revealed an extremely rich chemistry in comet T7. Here we present production rates, mixing ratios, and rotational temperatures for CO spanning UT 3 - 9 May 2004, based on preliminary analysis of lines in the R and P branches of the v = 1 - 0 fundamental ro-vibrational band near 4.7 microns. Through comparison with abundances of other oxygen-bearing molecules, specifically formaldehyde (H_2CO) and methyl alcohol (CH_3OH), potential implications for the comet's volatile carbon-oxygen history will be discussed. The prospective of laboratory ice irradiation experimentation, as a comparative method to cometary observations, will also be explored.

This research is supported by the NASA Planetary Astronomy Program, through RTOP 344-32-98 and 344-32-51 to M. A. DiSanti.